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Energy of internal modes of nonlinear waves and complex frequencies due to symmetry breaking
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Considering a class of Hamiltonian systems, it is demonstrated that energy of the internal modes with real
frequencies supported by nonlinear waves and appearing due to perturbations breaking a continuous symmetry
has its sign determined by the symmetry itself, independently of the nature of the perturbations. In particular,
it is shown that negative energy modes emerge as a result of the breaking of the phase symmetry in the
perturbed nonlinear-Schinger equation. An expression for energy of the Vakhitov-Kolokolov internal
modes is also derived. Comparative analysis of the energy signs of the internal modes in these two cases
explains the ubiquity of instabilities with complex frequencies of solitary and continuous waves in systems
with broken phase symmetry.
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Studies of the internal modes supported by nonlineathree wave mixing, which are applicable to many problems
waves of different physical origin have attracted a great deah optics, fluid dynamics, plasma physics, and other fields.
of attention over recent decades. The presence of these We start by considering a Hamiltonian system in the form
modes is responsible, e.g., for persistent oscillatory dynamics
[1,2] and is directly linked to a most important problem of - A
nonlinear dynamics—stability of an equilibriufa—5]. Hoypt ’75_@* =0, @

It is clear that internal modes being excited by imperfec-

tions in initial conditions should carry cer_tain energy. Thedescribing the evolution oN interacting waves with com-
amount of energy carried by a particular internal mode de-

; T * *\T -

pends on the strength and geometry of the initial perturbaple)_( arTIpJItuqu i = "b“f Y1 o U)o m
tions and cannot be considered as an intrinsic characteristic diag(—1.1) is the structure matrix,I is the NXN
of the system and its equilibria. On the contrary, the sign ofdentity operator,H is the energy functionalor Hamil-
the energy of an excited mode does not generally depend danian, and SHISy* =(SHISyT , ... SHI
the magnitude of the perturbation. Therefore, analysis ofy?,5H/ 8y, ... 5H/84y)T. Below we often use the iden-
ese sgns i ar ofe e n mahenatial ey 77 dag(.D). »
faht i TR ’ X To study the stability of an equilibrium staig. found
ight important qualitative information, for reviews sgg5|. . - o

The notion of energy of internal modes is similar to the from the conditionéH/5y* =0, we make the substitution
gquantum-mechanical definition of energy through the eigen#¥= ¢+ a into H and disregard all terms of order higher than
values of the Hamiltonian and it can be considered as a gerecond in the components af This procedure leaves us
eralization of the latter to the class of non-self-adjdimdn-  with linear equations describing evolution of the perturbation
Hermitian), but still Hamiltonian problems. One of the \eactora:
striking predictions of the energy analysis is that frequency

resonances of the internal modes wiibposite energy signs SB
(opposite signaturesis the most typical scenario leading to igtgz - 7p——=—1Ba, 2
the appearance of complex frequencies in the spectrum of an oa*

equilibrium [4,5]. This type of instability can be interpreted

as mutual annihilation of a particle with its antiparticle. whereB=%(§|I§5) is the quadratic part of the Hamiltonian,
Analysis of the energy of the internal modes has been use@ s the linear Nx 2N self-adjoint operator

e.g., to interpret instabilities of plasmdd,6] and water

waves[4,7], vortices in superfluidg8,9], and optical solitons 5 R S2H 5°H
[10] and breatherg2]. B=| . o, éij:*—, ?ij:ﬁ, (3)
One of the key problems, which has remained unad- R* S* Oy 6 oY oY

dressed so far, is whether there are any universal mecha-
nisms governing the appearance of the modes with oppositendS, R areNx N matrix operators with element;, r;; .

energy signs leading to their subsequent resonances. In tm'sf ..|...) defines scalar produc{tﬂj):deE-f-*g- _Sec-
work we will demonstrate that one of such mechanisms is T 5oL I
the breaking of the continuous symmetry of the governin cznd*varlatlonsA[l Eqs(3? are taken Eorl//: Ye- Assum'|r.19

equations. Our analysis will be fairly general and supported= & exp{wt) + 7&*exp(-iw™t), wherer is the transposition
by consideration of such ubiquitous examples as the pematrix, 7=antidiag(,l), we derive the non-self-adjoint ei-

turbed nonlinear Schainger(NLS) equation and degenerate genvalue problem
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7BE = wnén, (4)  eigenfrequency ofyB with eigenvectorU, has algebraic
multiplicity 2.
where En are eigen- or normal modes of the perturbations We aim to calculate the frequencies and energy signs of

and w,, are their eigenfrequencies. Internal modes are eigerfh€ €igenmodes ofB, replacingU, under the action of the

modes with real frequencies belonging to the discrete spedymmetry breaking perturbations. In order to do this we ex-
trum. pand the solution of Eq(4) as an asymptotic series jn

assuming thato~ /. Keeping the first two terms we find

Perturbing an equilibrium statée, one generally either that

adds or subtracts energy. Assuming tagt=0)= &, + 7&* ,
we can define the energy, of the normal perturbation as &= OO+ wljl+ e (6)

en={&n|BEn) = wn(&n| En). (5  Next, we substitute E¢(6) into the orthogonality condition

€, is simply the difference between the Hamiltonians for the M(%Bsba ;7ljo>: w(§| ;700% (7)

perturbed and unperturbed equilibria. o _ o . .
Significant insight into Eq(5) can be achieved, using the Which is derived by multiplying Eq(4) by #U,. To leading

biorthogonality of the eigenmodes o8 and of the adjoint order we find that frequencies of the modes appearing due to

A~ > - , ~ symmetry breaking can be found from

operatorBzp, i.e., (&,lv,)=0, wheren#n’ andv, obeys

(7B) Tun=Bunop=wion. If wyis real, themy =ty and i W2Usl 700 = u(BaJolUg)+ 0% ®)

w, is complex or imaginary, them,= n¢} . In the latter

case, 7&, is also an eigenmode @7, but with eigenfre- and the corresponding energy is
quencyw, . Hence ifimw,# 0, then biorthogonality implies

(&, m&)=€,=0, i.e.,modes with complex or imaginary fre-

?:jr}féesugr?::ri)észirhoe er;]:r%?ti%:i%?'r?]c;t Tﬁé rsnioiesf Z\gtnh All particular features of the perturbations are hidden inside
q ' 9 ' g wgp and their role is only in determining whetheris real or

be scaled. However, it is more convenient for us to continue

. _ 2 _
without any normalization, keeping in mind that sgg), not imaginary. Iflmwsb—o,.thenesb wsp and thgreforehe en-
ergy sign of the emerging spectrally stable internal modes is

|€,|, has paramount importance. For more details of the in: d dent f h trv-breaki turbati
terplay between the biorthogonality and energy signs, sedigependent from the - Symmelry-breaking - perturbations

[8]. nésb, but is solely determined by the properties of the bro-
We assume now that the equilibrium under consideratiorken symmetry reflected in the structure of the operatBg

is spectrally stable, i.e., it has real spectrum, and thaan  and its eigenmoded hus,

be present in the forril=Hq+ uHg,. Hg is invariant with o

respect to a continuous one-parameter symmetry gehup sgn(esp) =sgn U4 nUog). (10

andHg, describes corrections breaking this symmetry. Note

that previous papers exploring the energy sign ideas in thdlote that the latter result for the energy sign is valid for

context of the stability of solitary waves, see, €[8,10 and  arbitrary largeu providing that no frequency resonances

references therein, have not considered the problem of thaith other internal modes take place. Rews,=0 and

energy signs of the internal modes emerging due to pertutmwg,# 0, i.e., symmetry breaking leads to spectral instabil-

bations breaking the continuous symmetry group of thety, theneg,=0.

Hamiltonian. The parameter characterizes the strength of  To illustrate applications and further develop the above

the symmetry breaking perturbations and it is assumed to bileas, we consider the fundamental examples of the two-

a small parameter in our analysi.also can be presented in dimensional2D) NLS equation and three wave mixing. 2D

the form By + uB,,, whereB,, contains the corrections to NLS with generalized nonlinearity, can be derived from the

the Hamiltonian and the equilibrium. It is an important fact Hamiltonian
that the energy sign of the internal modes preserves as pa-

2
rameters vary as long as there is no frequency resonance with HO:f f dxdy[ IV |2+ 6] g2 — flwl dlf(l)}. (11)
another mode, in which case energy can become gro 0

Thus if the energy sign is found far<1, it will remain the i
same even outside the region of validity of the asymptotic/V€ @ssume below that<0¢<maxf(l) and 4,f>0, which

expansion. ensures existence of bright solitary solutiof&11]. The
We also assume that the infinitesimal transformagigy ~ SYmMmetry of interest is

applied to trle equilibriumZeAgtinerates a Goldstone or neu- W pe'?, (12)

tral mode U, such thatByUy=0. It is obvious that

(Ug|7U0)=0. Therefore, the generalized eigenvectd;,  with the corresponding Goldstone Qmodlbz(wo,—g//o)T.

defined as the solution afBU;=U,, exists so that the zero Here i is a real function obeying’2yq=(6— f(145)) o,

€sp= wsp( WspT 03 (U1 700) +O(| ]?). 9
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which characterizes the transverse profile of the soliton. ThSubstituting Eq(17) into the right-hand side of the orthogo-
generalized eigenvector associated witi, is U;  nality condition(7), we find thatw?,(U,| 7U )+ (U] 7U)
=g(o, o) " _ _ =0(|w,*). Thus, when(U|7U,) passes through zero,

Typical perturbations breaking symmet(§2) and pre- then two purely real eigenvalues pass through zero and move
SerVing the Ham”tonian structure of the equations are eitheék)ng the imaginary axis_ The above Consideration is just
external, another way to prove validity of the VK criteriofi6).

Using expansioril7), we can calculate energy, carried
HE) = _f f dxdy{ y* + ! (13 by the internal modes causing the VK instability. Substitut-
ing Eq.(17) into Eq. (5), we find

or pal’ametrIC, €E,k= Za)vk((l)gk'i' w:k3)<02| ;70 1>+ O(|wuk|5)' (18)

HP) = — Ef f dxdy{¢* ¢* + ip} (14)  The criterion(16) implies practically the spectral stability of
2 the solitary waves in many problems, despite the fact that its
sufficiency can be rigorously proved only in a limited num-

ﬁ“ﬂ”gh(';‘ p)trlje co_nbtext of notnllnlear OpIF'CS’ Harpllt(l)nlang ber of case§17]. Stability necessary requiraﬁfk>0, which
ot uH” describe, respectively, nonlinear optica Cav"together with(16), readily implies

ties with intensity dependent purely dispersive nonlinearity
excited by an external monochromatic pufd] and intra- _ G.1570.)>0 19
cavity parametric wave mixing when the pump field is far sgr €)= Sgr{Uz| 7U2)>0. (19
off-resonance or not resonated at[dlB]. The paramete  |n fact, positivity of the energy carried by the VK modes also

has physical meaning as the frequency detuning of the fielgeadily follows from the variational methods of the proof of
from the cavity resonance. The symmetry breaking perturbathe VK criterion given in[17].

tions (13) and (14) also arise in the plasma physi¢$4], It follows from the preceding that if perturbations break-
dynamics of fluids[15], spin waves in ferromagnets and jng the phase symmetry have been added into a system with
other context$16]. a VK threshold, then coexistence of the modes with positive

It follows from Eq. (10) that the pair of the zero-energy and negative energies and subsequent complex-frequency in-
modesU transforms into the internal modes carrying energystability should be expected. A famous example of a system

with signs given by with four-fold degeneracy ofl, is provided by the ground-
B state solitary wave of the Hamiltoniafil) with f(l)=1.
Sgresh) =Sgr—d,Q), (15 Any perturbation consisting of saturating nonlinearity, the
simplest of which isf(1)—1=— 812, 0<B<1, replaces the

where Q= [ [dxdyy3 is the power or number of particles
invariant. Thus if the Vakhitov-KolokoloWWK) stability cri-
terion[11]

critical four-fold degeneracy by a noncritical double degen-
eracy and leads to emergence of the low-frequency positive-
energy VK modes. An interesting property of 2D NLS with
f=1is that the second generalized eigenvector can be found
explicitly [3]: U,=1/86r2U,.
is satisfied foru =0, then the breaking of the phase symme- To verify that symmetry breaking close to the VK thresh-
try leads to the emergence pégative-energy modeBqua-  old (U,| U o)~ w? does indeed lead to a complex-frequency
tions(9), (10) and(16) represent main conceptually different instability in driven 2D NLS, we use again perturbations
results of this work. The rest of the paper is largely devoted13), (14), and expansiori17). Assuming thatu'*~ w, we
to the illustration of their applicability. find that the orthogonality conditiof¥) gives

It is clear that Eq(8) loses its validity wher{U,|7U,) o o o
either changes sign or is simply close to zero. Therefore, the <B§%p)Uo|Uo>= w4(U2| nU)+ wZ(U1| nUg). (20
perturbation expansion capturing symmetry breaking effects
has to be modified in the vicinity of such a point. However, Then, taking5~/u, we show that the solitary solutions

—(Uy|7Ug)=3,Q>0 (16)

before proceeding with these modifications, it is instructivethemselves are Y =¢l ¢(f’p){ VO o+ B6¥2W |
to consider the situation, whefU;|7U,) is small, but no ¥ (u/6) WP+ g2W 1+ 0(u®?), where wP'=1/g[¥,
symmetry breaking is present. +p(dW¥y/dp)] andp=r /6. $%P are the phases locked by

The system#7BU,=U, is solvable if (U;|7Ug)=0. the perturbations®”=0, ¢®=, and¢P==/2, i.e., for
Then equationyBU;=U, is also solvable without any ad- €ach of the cases the phase can be locked to two physically
ditional constraint, simply becau$€ |;;U y=0. Therefore distinct values. Functionl; is irrelevant for our purposes

. ’ o xmelim and ¥, ¥ are solutions of the parameter independent
the zero eigenfrequency with eigenvectdg has now alge- ol F2 Y2y - pq,z - per
braic multiplicity 4. If we assuméU,|7Ug)~ w?, then the equations [D+ _0] 0=0, [D+3Wp]¥, =y, _ [D

. RPN . +3P21¢®P=1 with D=0?+(1/p)d,—1. Numerically
solution of Eq.(4) with B=By, up to the fourth order, is S01T2 =0T PN Op

solving the latter, we find thatB{). Ug|Uq)=*29.8mu,

§=ljo+w01+w2ljz+w303+0(|w|4) (17) <Bg?ioo|00>zi961977ﬂl\/§, (L_jz| ’7\701>:05537T/03,
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and (U,| 7Uq)=—15.084rB. Now it can be easily shown Which are linear losses. A phenomenological account of the
that soliton branches witly(®P) = 4(®P) are stable whep,  €ffect of losses on the soliton spectrum can be made by re-
deviates from zero, but lose their stability due to appearancBlacinge by w+ivy, y>0. This trick is often used, e.g., in

of the complex frequencies, when exceeds threshold val- textbooks on nonlinear optics, to include damping phenom-
ues u{P’=3.50°p% and u{?=10.79"?8%. The branches ena into dispersion coefficients. In soliton problems it de-

&P have a zero-energy unstable mode with purely imagiscribes a shift of the soliton spectrum by in the
nary frequency for any nonzero. (Rew,Imw) plane, which qualitatively agrees with numeri-
The approach developed above can be applied not onigal calculationd19]. An approach to the problem of non-
for solitary waves, but also in the simpler cases, when thélamiltonian perturbations, emphasizing the role played by
equilibrium under consideration is a continuous wave. Tathe energy of internal modes has been outlinefi2ie] and
illustrate this, one can consider the Hamiltonian describingshould be a guideline for future rigorous studies of the inter-

degenerate intracavity three wave mixifig] play between symmetry breaking and losses. Note, that pre-
5 5 1, 2% vious works known to the author that explore complex-
H= 00| ¢1|*+ 60|l + 3 (¥195 +C.C) frequency instabilites due to symmetry breaking, see

— (udf + po +c.c). 21) L19,21,22, do not. contain energy based analy_ses, showing,
owever, generality of the phenomenon described above.
Here 6, - are detunings of the fields at frequenci{esand In summary, considering a class of Hamiltonian systems
2Q) from the nearest cavity resonances,=0 andu,=0  with broken symmetries, we have demonstrated that internal
correspond, respectively, to the case of frequency downmodes of nonlinear waves, replacing Goldstone modes, carry
conversion and second-harmonic generation./-05=0 the  energy with signs that are independent of the choice of the
system has gauge symmetry,(,i,)— (41€'%,4,e'%?). In-  symmetry-breaking perturbations. In particular, breaking of
troducing parameterg@ and 8, o= 0, 6,,=26+ 5, one can the phase symmetry in the NLS equation leads to appearance
show that the VK threshold is given by(|#o1l?+2|0d?)  of the negative energy modes, which, in turn, explains the
=0, and for the solution) p1|?=2600602q, |0l =|6al, it  presence of complex frequency instabilities of solitary waves
exists at 6 ,,=0. Therefore VK modes are present for in a variety of physical systems reducible to the driven NLS.
0a207#0. If any or bothu,,#0, then complex-frequency
instability is expected and indeed happens as was found by The author is grateful to A.G. Vladimirov for the calcu-
traditional analysid18]. If diffraction is included into Eq. lation of numerical constants and to A.R. Champneys for a
(21), then the same instability of solitary structures can alscareful reading of the manuscript. Support from the Royal
be found[19]. Society of Edinburgh and UK EPSRC, Grant No. GR/
An important ingredient, which we have disregardedN19830 is acknowledged.
above, is non-Hamiltonian perturbations, the simplest of
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