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Energy of internal modes of nonlinear waves and complex frequencies due to symmetry breakin
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Considering a class of Hamiltonian systems, it is demonstrated that energy of the internal modes with real
frequencies supported by nonlinear waves and appearing due to perturbations breaking a continuous symmetry
has its sign determined by the symmetry itself, independently of the nature of the perturbations. In particular,
it is shown that negative energy modes emerge as a result of the breaking of the phase symmetry in the
perturbed nonlinear-Schro¨dinger equation. An expression for energy of the Vakhitov-Kolokolov internal
modes is also derived. Comparative analysis of the energy signs of the internal modes in these two cases
explains the ubiquity of instabilities with complex frequencies of solitary and continuous waves in systems
with broken phase symmetry.
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Studies of the internal modes supported by nonlin
waves of different physical origin have attracted a great d
of attention over recent decades. The presence of th
modes is responsible, e.g., for persistent oscillatory dynam
@1,2# and is directly linked to a most important problem
nonlinear dynamics—stability of an equilibrium@2–5#.

It is clear that internal modes being excited by imperfe
tions in initial conditions should carry certain energy. T
amount of energy carried by a particular internal mode
pends on the strength and geometry of the initial pertur
tions and cannot be considered as an intrinsic character
of the system and its equilibria. On the contrary, the sign
the energy of an excited mode does not generally depen
the magnitude of the perturbation. Therefore, analysis
these signs, which are often referred in mathematical lite
ture as signatures or Krein-signs, can be expected to h
light important qualitative information, for reviews see@4,5#.

The notion of energy of internal modes is similar to t
quantum-mechanical definition of energy through the eig
values of the Hamiltonian and it can be considered as a g
eralization of the latter to the class of non-self-adjoint~non-
Hermitian!, but still Hamiltonian problems. One of th
striking predictions of the energy analysis is that frequen
resonances of the internal modes withopposite energy sign
~opposite signatures!, is the most typical scenario leading
the appearance of complex frequencies in the spectrum o
equilibrium @4,5#. This type of instability can be interprete
as mutual annihilation of a particle with its antiparticl
Analysis of the energy of the internal modes has been u
e.g., to interpret instabilities of plasmas@4,6# and water
waves@4,7#, vortices in superfluids@8,9#, and optical solitons
@10# and breathers@2#.

One of the key problems, which has remained un
dressed so far, is whether there are any universal me
nisms governing the appearance of the modes with oppo
energy signs leading to their subsequent resonances. In
work we will demonstrate that one of such mechanisms
the breaking of the continuous symmetry of the govern
equations. Our analysis will be fairly general and suppor
by consideration of such ubiquitous examples as the
turbed nonlinear Schro¨dinger~NLS! equation and degenera
1063-651X/2001/64~5!/055601~4!/$20.00 64 0556
r
al
se
cs

-

-
-

tic
f
on
f

a-
h-

-
n-

y

an

d,

-
a-
ite
his
is
g
d
r-

three wave mixing, which are applicable to many proble
in optics, fluid dynamics, plasma physics, and other field

We start by considering a Hamiltonian system in the fo

i ] tcW 1ĥ
dH

dcW *
50, ~1!

describing the evolution ofN interacting waves with com-
plex amplitudes c j , cW 5(c1 . . . cN ,c1* . . . cN* )T, ĥ

5diag(2 Î , Î ) is the structure matrix,Î is the N3N
identity operator,H is the energy functional~or Hamil-
tonian!, and dH/dcW * 5(dH/dc1* , . . .dH/
dcN* ,dH/dc1 , . . .dH/dcN)T. Below we often use the iden

tity ĥĥ5diag(Î , Î ).
To study the stability of an equilibrium statecW e found

from the conditiondH/dcW * 50, we make the substitution
cW 5cW e1aW into H and disregard all terms of order higher tha
second in the components ofaW . This procedure leaves u
with linear equations describing evolution of the perturbat
vectoraW :

i ] taW 52ĥ
dB

daW *
52ĥB̂aW , ~2!

whereB5 1
2 ^aW uB̂aW & is the quadratic part of the Hamiltonian

B̂ is the linear 2N32N self-adjoint operator

B̂5F Ŝ R̂

R̂* Ŝ*
G , Ŝi j 5

d2H

dc i* dc j
, r̂ i j 5

d2H

dc i* dc j*
, ~3!

and Ŝ, R̂ areN3N matrix operators with elementsŝi j , r̂ i j .

^ . . . u . . . & defines scalar product,^ fW ugW &5*dV( i f i* gi . Sec-

ond variations in Eqs.~3! are taken forcW 5cW e . Assuming
aW 5jW exp(ivt)1t̂jW*exp(2iv* t), wheret̂ is the transposition
matrix, t̂5antidiag(Î , Î ), we derive the non-self-adjoint ei
genvalue problem
©2001 The American Physical Society01-1
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ĥB̂jWn5vnjWn , ~4!

where jWn are eigen- or normal modes of the perturbatio
andvn are their eigenfrequencies. Internal modes are eig
modes with real frequencies belonging to the discrete sp
trum.

Perturbing an equilibrium statecW e , one generally either
adds or subtracts energy. Assuming thataW (t50)5jWn1 t̂jWn* ,
we can define the energyen of the normal perturbation as

en5^jWnuB̂jWn&5vn^jWnuĥjWn&. ~5!

en is simply the difference between the Hamiltonians for t
perturbed and unperturbed equilibria.

Significant insight into Eq.~5! can be achieved, using th
biorthogonality of the eigenmodes ofĥB̂ and of the adjoint
operatorB̂ĥ, i.e., ^jWnuvW n8&50, wherenÞn8 and vW n obeys
(ĥB̂)†vW n5B̂ĥvW n5vn* vW n . If vn is real, thenvW n5ĥjWn and if

vn is complex or imaginary, thenvW n5ĥjWn* . In the latter

case,ĥjWn is also an eigenmode ofB̂ĥ, but with eigenfre-
quencyvn . Hence ifImvnÞ0, then biorthogonality implies

^jWnuĥjWn&5en50, i.e.,modes with complex or imaginary fre
quencies carry zero energy, see also@5,8#. For modes with
real frequencies, the magnitude, but not the sign ofen , can
be scaled. However, it is more convenient for us to contin
without any normalization, keeping in mind that sgn(en), not
uenu, has paramount importance. For more details of the
terplay between the biorthogonality and energy signs,
@8#.

We assume now that the equilibrium under considera
is spectrally stable, i.e., it has real spectrum, and thatH can
be present in the formH5H01mHsb . H0 is invariant with
respect to a continuous one-parameter symmetry groupGf ,
andHsb describes corrections breaking this symmetry. N
that previous papers exploring the energy sign ideas in
context of the stability of solitary waves, see, e.g.,@2,10# and
references therein, have not considered the problem of
energy signs of the internal modes emerging due to per
bations breaking the continuous symmetry group of
Hamiltonian. The parameterm characterizes the strength o
the symmetry breaking perturbations and it is assumed to
a small parameter in our analysis.B̂ also can be presented i
the form B̂01mB̂sb , whereB̂sb contains the corrections t
the Hamiltonian and the equilibrium. It is an important fa
that the energy sign of the internal modes preserves as
rameters vary as long as there is no frequency resonance
another mode, in which case energy can become zero@5#.
Thus if the energy sign is found form!1, it will remain the
same even outside the region of validity of the asympto
expansion.

We also assume that the infinitesimal transformationGdf

applied to the equilibriumcW e generates a Goldstone or ne
tral mode UW 0 such that B̂0UW 050. It is obvious that

^UW 0uĥUW 0&[0. Therefore, the generalized eigenvectorUW 1,
defined as the solution ofĥB̂UW 15UW 0, exists so that the zero
05560
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eigenfrequency ofĥB̂ with eigenvectorUW 0 has algebraic
multiplicity 2.

We aim to calculate the frequencies and energy signs
the eigenmodes ofĥB̂, replacingUW 0 under the action of the
symmetry breaking perturbations. In order to do this we
pand the solution of Eq.~4! as an asymptotic series inm
assuming thatv;Am. Keeping the first two terms we find
that

jW5UW 01vUW 11 . . . . ~6!

Next, we substitute Eq.~6! into the orthogonality condition

m^ĥB̂sbjW uĥUW 0&5v^jW uĥUW 0&, ~7!

which is derived by multiplying Eq.~4! by ĥUW 0. To leading
order we find that frequencies of the modes appearing du
symmetry breaking can be found from

vsb
2 ^UW 1uĥUW 0&5m^B̂sbUW 0uUW 0&1O~m3/2! ~8!

and the corresponding energy is

esb5vsb~vsb1vsb* !^UW 1uĥUW 0&1O~ uvu3!. ~9!

All particular features of the perturbations are hidden ins
vsb and their role is only in determining whetherv is real or
imaginary. If Imvsb50, thenesb;vsb

2 and thereforethe en-
ergy sign of the emerging spectrally stable internal mode
independent from the symmetry-breaking perturbatio

ĥB̂sb , but is solely determined by the properties of the b

ken symmetry reflected in the structure of the operatorĥB̂0
and its eigenmodes. Thus,

sgn~esb!5sgn̂ UW 1uĥUW 0&. ~10!

Note that the latter result for the energy sign is valid f
arbitrary largem providing that no frequency resonanc
with other internal modes take place. IfRevsb50 and
ImvsbÞ0, i.e., symmetry breaking leads to spectral instab
ity, then esb50.

To illustrate applications and further develop the abo
ideas, we consider the fundamental examples of the t
dimensional~2D! NLS equation and three wave mixing. 2
NLS with generalized nonlinearity, can be derived from t
Hamiltonian

H05E E dxdyH u¹W cu21uucu22E
0

ucu2
dI f ~ I !J . ~11!

We assume below that 0,u,maxI f(I) and ] I f .0, which
ensures existence of bright solitary solutions@3,11#. The
symmetry of interest is

c→ceif, ~12!

with the corresponding Goldstone modeUW 05(c0 ,2c0)T.
Here c0 is a real function obeying¹W 2c05„u2 f (c0

2)…c0,
1-2
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which characterizes the transverse profile of the soliton.
generalized eigenvector associated withUW 0 is UW 1
5]u(c0 ,c0)T.

Typical perturbations breaking symmetry~12! and pre-
serving the Hamiltonian structure of the equations are ei
external,

Hsb
(e)52E E dxdy$c* 1c% ~13!

or parametric,

Hsb
(p)52

1

2E E dxdy$c* c* 1cc% ~14!

forcing. In the context of nonlinear optics, Hamiltonia
H01mHsb

(e,p) describe, respectively, nonlinear optical ca
ties with intensity dependent purely dispersive nonlinea
excited by an external monochromatic pump@12# and intra-
cavity parametric wave mixing when the pump field is f
off-resonance or not resonated at all@13#. The parameteru
has physical meaning as the frequency detuning of the fi
from the cavity resonance. The symmetry breaking pertur
tions ~13! and ~14! also arise in the plasma physics@14#,
dynamics of fluids@15#, spin waves in ferromagnets an
other contexts@16#.

It follows from Eq. ~10! that the pair of the zero-energ
modesUW 0 transforms into the internal modes carrying ener
with signs given by

sgn~esb!5sgn~2]uQ!, ~15!

where Q5**dxdyc0
2 is the power or number of particle

invariant. Thus if the Vakhitov-Kolokolov~VK ! stability cri-
terion @11#

2^UW 1uĥUW 0&5]uQ.0 ~16!

is satisfied form50, then the breaking of the phase symm
try leads to the emergence ofnegative-energy modes.Equa-
tions ~9!, ~10! and~16! represent main conceptually differe
results of this work. The rest of the paper is largely devo
to the illustration of their applicability.

It is clear that Eq.~8! loses its validity when̂ UW 1uĥUW 0&
either changes sign or is simply close to zero. Therefore,
perturbation expansion capturing symmetry breaking effe
has to be modified in the vicinity of such a point. Howev
before proceeding with these modifications, it is instruct
to consider the situation, when̂UW 1uĥUW 0& is small, but no
symmetry breaking is present.

The systemĥB̂UW 25UW 1 is solvable if ^UW 1uĥUW 0&50.
Then equationĥB̂UW 35UW 2 is also solvable without any ad
ditional constraint, simply because^UW 2uĥUW 0&[0. Therefore
the zero eigenfrequency with eigenvectorUW 0 has now alge-
braic multiplicity 4. If we assumêUW 1uĥUW 0&;v2, then the
solution of Eq.~4! with B̂5B̂0, up to the fourth order, is

jW5UW 01vUW 11v2UW 21v3UW 31O~ uvu4!. ~17!
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Substituting Eq.~17! into the right-hand side of the orthogo
nality condition~7!, we find thatvvk

2 ^UW 2uĥUW 1&1^UW 1uĥUW 0&
5O(uvvku4). Thus, when^UW 1uĥUW 0& passes through zero
then two purely real eigenvalues pass through zero and m
along the imaginary axis. The above consideration is j
another way to prove validity of the VK criterion~16!.

Using expansion~17!, we can calculate energyevk carried
by the internal modes causing the VK instability. Substit
ing Eq. ~17! into Eq. ~5!, we find

evk52vvk~vvk
3 1vvk*

3!^UW 2uĥUW 1&1O~ uvvku5!. ~18!

The criterion~16! implies practically the spectral stability o
the solitary waves in many problems, despite the fact tha
sufficiency can be rigorously proved only in a limited num
ber of cases@17#. Stability necessary requiresvvk

2 .0, which
together with~16!, readily implies

sgn~evk!5sgn̂ UW 2uĥUW 1&.0. ~19!

In fact, positivity of the energy carried by the VK modes al
readily follows from the variational methods of the proof
the VK criterion given in@17#.

It follows from the preceding that if perturbations brea
ing the phase symmetry have been added into a system
a VK threshold, then coexistence of the modes with posit
and negative energies and subsequent complex-frequenc
stability should be expected. A famous example of a sys
with four-fold degeneracy ofUW 0 is provided by the ground-
state solitary wave of the Hamiltonian~11! with f (I )5I .
Any perturbation consisting of saturating nonlinearity, t
simplest of which isf (I )2I 52bI 2, 0,b!1, replaces the
critical four-fold degeneracy by a noncritical double dege
eracy and leads to emergence of the low-frequency posit
energy VK modes. An interesting property of 2D NLS wi
f 5I is that the second generalized eigenvector can be fo
explicitly @3#: UW 251/8ur 2UW 0.

To verify that symmetry breaking close to the VK thres
old ^UW 1uĥUW 0&;v2 does indeed lead to a complex-frequen
instability in driven 2D NLS, we use again perturbatio
~13!, ~14!, and expansion~17!. Assuming thatm1/4;v, we
find that the orthogonality condition~7! gives

^B̂sb
(e,p)UW 0uUW 0&5v4^UW 2uĥUW 1&1v2^UW 1uĥUW 0&. ~20!

Then, takingb;Am, we show that the solitary solution

themselves are c6
(e,p)5eif6

(e,p)
$AuC01bu3/2C1

7(m/u) C2
(e,p)1b2C3%1O(m3/2), where C2

(p)5 1
2 Au@C0

1r(dC0/dr)# and r5rAu. f6
e,p are the phases locked b

the perturbationsf1
(e,p)50, f2

(e)5p, andf2
(p)5p/2, i.e., for

each of the cases the phase can be locked to two physi
distinct values. FunctionC3 is irrelevant for our purposes
and C0,1, C2

(e) are solutions of the parameter independe

equations @D̂1C0
2#C050, @D̂13C0

2#C15C0
5, @D̂

13C0
2#C2

(e)51 with D̂[]r
21(1/r) ]r21. Numerically

solving the latter, we find that̂B̂sb,6
(p) UW 0uUW 0&.629.8pm,

^B̂sb,6
(e) UW 0uUW 0&.69.619pm/Au, ^UW 2uĥUW 1&.0.553p/u3,
1-3
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and ^UW 1uĥUW 0&.215.084pb. Now it can be easily shown
that soliton branches withc (e,p)5c2

(e,p) are stable whenm
deviates from zero, but lose their stability due to appeara
of the complex frequencies, whenm exceeds threshold val
ues m th

(p).3.5u3b2 and m th
(e).10.7u7/2b2. The branches

c1
(e,p) have a zero-energy unstable mode with purely ima

nary frequency for any nonzerom.
The approach developed above can be applied not

for solitary waves, but also in the simpler cases, when
equilibrium under consideration is a continuous wave.
illustrate this, one can consider the Hamiltonian describ
degenerate intracavity three wave mixing@18#

H5uVuc1u21u2Vuc2u21 1
2 ~c1

2c2* 1c.c.!

2~m1c1* 1m2c2* 1c.c.!. ~21!

HereuV,2V are detunings of the fields at frequenciesV and
2V from the nearest cavity resonances,m150 andm250
correspond, respectively, to the case of frequency do
conversion and second-harmonic generation. Form1,250 the
system has gauge symmetry (c1 ,c2)→(c1eif,c2ei2f). In-
troducing parametersu andd, uV5u, u2V52u1d, one can
show that the VK threshold is given by]u(uc01u212uc02u2)
50, and for the solutionuc01u252uVu2V , uc02u5uuVu, it
exists at uV,2V50. Therefore VK modes are present f
uV,2VÞ0. If any or bothm1,2Þ0, then complex-frequency
instability is expected and indeed happens as was found
traditional analysis@18#. If diffraction is included into Eq.
~21!, then the same instability of solitary structures can a
be found@19#.

An important ingredient, which we have disregard
above, is non-Hamiltonian perturbations, the simplest
s

r.

.
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which are linear losses. A phenomenological account of
effect of losses on the soliton spectrum can be made by
placingv by v1 ig, g.0. This trick is often used, e.g., in
textbooks on nonlinear optics, to include damping pheno
ena into dispersion coefficients. In soliton problems it d
scribes a shift of the soliton spectrum byg in the
(Rev,Imv) plane, which qualitatively agrees with numer
cal calculations@19#. An approach to the problem of non
Hamiltonian perturbations, emphasizing the role played
the energy of internal modes has been outlined in@20# and
should be a guideline for future rigorous studies of the int
play between symmetry breaking and losses. Note, that
vious works known to the author that explore comple
frequency instabilities due to symmetry breaking, s
@19,21,22#, do not contain energy based analyses, show
however, generality of the phenomenon described above

In summary, considering a class of Hamiltonian syste
with broken symmetries, we have demonstrated that inte
modes of nonlinear waves, replacing Goldstone modes, c
energy with signs that are independent of the choice of
symmetry-breaking perturbations. In particular, breaking
the phase symmetry in the NLS equation leads to appear
of the negative energy modes, which, in turn, explains
presence of complex frequency instabilities of solitary wav
in a variety of physical systems reducible to the driven NL
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